0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Ultra-Low Energy Domain-Specific Instruction-Set Processors (Paperback, 2010 ed.): Francky Catthoor, Praveen Raghavan, Andy... Ultra-Low Energy Domain-Specific Instruction-Set Processors (Paperback, 2010 ed.)
Francky Catthoor, Praveen Raghavan, Andy Lambrechts, Murali Jayapala, Angeliki Kritikakou, …
R4,527 Discovery Miles 45 270 Ships in 10 - 15 working days

Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space. In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.

Ultra-Low Energy Domain-Specific Instruction-Set Processors (Hardcover, 2010 ed.): Francky Catthoor, Praveen Raghavan, Andy... Ultra-Low Energy Domain-Specific Instruction-Set Processors (Hardcover, 2010 ed.)
Francky Catthoor, Praveen Raghavan, Andy Lambrechts, Murali Jayapala, Angeliki Kritikakou, …
R4,751 Discovery Miles 47 510 Ships in 10 - 15 working days

Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.

In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
Bostik Super Clear Tape Value Pack (12mm…
R36 R31 Discovery Miles 310
Peptine Pro Canine/Feline Hydrolysed…
R369 R299 Discovery Miles 2 990
Soccer Waterbottle [Black]
R70 Discovery Miles 700
Shield Brake and Parts Cleaner (500ml)
R61 Discovery Miles 610
Rex Dog Potty Patch (43cm x 68cm)
R419 R329 Discovery Miles 3 290
Pure Pleasure Electric Heating Pad for…
 (2)
R599 R424 Discovery Miles 4 240
Brother JA1400 Basic Multi Purpose…
 (3)
R2,999 R2,299 Discovery Miles 22 990
Shelly Dimmer 2 Smart Wi-Fi Relay Switch…
R999 R939 Discovery Miles 9 390
Catan
 (16)
R1,150 R889 Discovery Miles 8 890

 

Partners